Showing posts with label ECE. Show all posts
Showing posts with label ECE. Show all posts

C Programming and Data Structures (CPDS) Notes,Textbook and Lab Manual Download

By // No comments:

Electronic Circuit Analysis (ECA) Lab Manual Download

By // No comments:
                    Click The Below Link To Download





Electronic Circuit Analysis

Principles of Electrical Engineering (PEE) LabManual Download

By // No comments:

                    Click The Below Link To Download










Pulse and Digital Circuits (PDC) Lab Manual Download

By // No comments:

                    Click The Below Link To Download












ElectroMagnetic theory and Transmission Lines (EMTL) Notes and Textbook Download

By // No comments:


                    Click The Below Links To Download








EC05214ANotes-55.pdf (46472)








Pulse and Digital Circuits (PDC) Notes and Textbook Download

By // No comments:



                    Click The Below Link To Download

In digital circuits, pulses can make the voltage either more positive or more negative. Usually, the more positive voltage is called the high state and the more negative voltage is called the low state. The length of time between the rise and the decay of a single pulse is called the pulse duration or pulse width.



switching theory and logic design (STLD) Notes and Textbook Download

By // 1 comment:

                    Click The Below Links To Download

Switching theory and logic design provides mathematical foundations and tools for digital system design that is an essential part in the research and development in almost all areas of modern technology.





       Unit-1_HP (STLD).pdf (278715)       


Determination of Psd with Wave Forms

By // No comments:
clc;
clear all;
close all;
N=1024;
fs=8000;
f1=input('enter the 1st freuency');
f2=input('enter the 2nd freuency');
f3=input('enter the 3rd freuency');
n=0:N-1;
x=sin(2*pi*(f1/fs)*n)+sin(2*pi*(f2/fs)*n)+sin(2*pi*(f3/fs)*n);
figure(1)
pxx=spectrum(x,N)
specplot(pxx,fs);
grid ON;
xlabel('freq hz');
ylabel('mag in db');
title('power spectrum of x(n)');


Impulse Response of a First Order and Second Order System with Wave Forms

By // 1 comment:
clc;
clear all;
close all;
a=input('enter the numerator coefficient value');
b=input('enter the denominator coefficient value');
N=input('enter the number of samples');
[h,t]=impz(a,b,N);
disp('h=')
disp(h)
stem(t,h);
xlabel('samples');
ylabel('amplitude');
title('impulse response');

Dual Tone Multi Frequency with Waveforms

By // No comments:
clc;
clear all;
close all;
fs=8000;
f1=770+/fs;
f2=1209/fs;
n=1:205;
x1=sin(2*pi*f1*n);
x2=sin(2*pi*f2*n);
x=x1+x2;
y=fft(x,205);
K=1:50;
z(K)=y(K);
stem(K,abs(z));
xlabel('k');
ylabel('amplitude');
title('DTMF signal');


Implementation of Decimation / Interpolation Process with Waveforms

By // No comments:
clc;
clear all;
close all;
t=0:0.01:1;
d=input('enter number D/I');
x=sin(2*pi*5*t);
y=decimate(x,d);
subplot(3,1,1);
stem(x(1:25));
title('original input signal');
xlabel('samples');
ylabel('amplitude');
subplot(3,1,2);
stem(y);
title('decimated output');
xlabel('samples');
ylabel('amplitude');
y1=interp(y,d);
subplot(3,1,3);
stem(y1(1:25));
title('interpolation output');
xlabel('samples');
ylabel('amplitude');


Implementation of Decimation Process with Waveforms

By // No comments:
clc;
clear all;
close all;
x=input('enter the sequence');
d=input('enter the decimation factor');
N=length(x);
n=0:N-1;
xd=x(1:d:N);
n1=1:N/d;
subplot(2,1,1);
stem(n,x);
title('input signal');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(n1-1,xd);
title('decimated output');
xlabel('samples');
ylabel('amplitude');

FFT and Convolution for FFT with Waveforms

By // No comments:
clc;
clear all;
close all;
x=input('enter the sequence');
N=input('enter the number of smples');
n=0:N-1
y=fft(x,N);
y1=abs(y);
y2=angle(y);
y3=ifft(y);
figure(1);
subplot(2,1,1);
stem(x);
title('original signal');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(y);
title('fft signal');
xlabel('samples');
ylabel('amplitude');
figure(2);
subplot(2,1,1);
stem(y1);
title('magnitude plot');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(y2);
title('phase angle');
xlabel('samples');
ylabel('amplitude');
figure(3);
subplot(2,1,1);
stem(y);
title('frequency domain sequence');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(y3);
title('invers fft signal');
xlabel('samples');
ylabel('amplitude');





% CONV FOR FFT
clc;
clear all;
close all;
x=input('enter sequence of x');
h=input('enter sequence of h');
X1=[x zeros(1,length(h)-1)];
disp('X1=');
disp(X1);
h1=[h zeros(1,length(x)-1)];
disp('h1=');
disp(h1);
X=fft(x1);
H=fft(h1);
y=X.*H;
y1=ifft(y);
disp('the conv y1=');
disp(y1);
figure(1);
subplot(5,1,1);
stem(x);
title('input signal 1');
xlabel('samples');
ylabel('amplitude');
subplot(5,1,2);
stem(h);
title('input signal 2');
xlabel('samples');
ylabel('amplitude');
subplot(5,1,3);
stem(X1);
title('fft signal 1');
xlabel('samples');
ylabel('amplitude');
subplot(5,1,4);
stem(h1);
title('fft signal 2');
xlabel('samples');
ylabel('amplitude');
subplot(5,1,5);
stem(y1);
title('conv signal');
xlabel('samples');
ylabel('amplitude');

DFT and IDFT with Wave Forms

By // No comments:
clc;
clear all;
close all;
x=input('enter the input sequence');
L=length(x);
N=input('enter number of samples');
xn=[x zeros(1,N-L)]
n=[0:1:N-1]
k=[0:1:N-1]
wN=exp(-j*2*pi/N);
nk=n'*k;
wNnk=wN.^(nk);
xk=xn*wNnk;
disp('dft of given sequence');
disp(xk);
figure(1);
subplot(2,1,1);
stem(k,xn);
title('original samples');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(k,xk);
title('discrete fourier transform');
xlabel('samples');
ylabel('amplitude');
figure(2)
subplot(2,1,1);
stem(k,abs(xk));
title('magnitude response');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(k,angle(xk));
title('phase response');
xlabel('frequency');
ylabel('amplitude');


       % IDFT
clc;
clear all;
close all;
x=input('enter the input sequence');
L=length(x);
N=input('enter number of samples');
xk=[x zeros(1,N-L)]
n=[0:1:N-1]
k=[0:1:N-1]
wN=exp(-j*2*pi/N);
nk=n'*k;
wNnk=wN.^(-nk);
xn=(xk*wNnk)/N;
disp('dft of given sequence');
disp(xk);
figure(1);
subplot(2,1,1);
stem(k,xk);
title('original samples');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(k,xn);
title('discrete fourier transform');
xlabel('samples');
ylabel('amplitude');


Frequency Response of a Given System with Wave Forms

By // No comments:
%impulse response
clc;
clear all;
close all;
N=input('enter the length of the sequence');
a=input('enter the numerator coefficient value');
b=input('enter the denominator coefficient value');
n1=0:1:N-1;
x1=(n1==0);
h1=filter(b,a,x1);
disp(h1);
subplot(2,1,1);
stem(n1,x1);
title('impulse response');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(n1,h1);
xlabel('samples');
ylabel('amplitude');
%unit step
clc;
clear all;
close all;
N=input('enter the length of the sequence');
a=input('enter the numerator coefficient value');
b=input('enter the denominator coefficient value');
n1=0:1:N-1;
x1=(n1>=0);
h1=filter(b,a,x1);
disp(h1);
subplot(2,1,1);
stem(n1,x1);
title('unit step response');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(n1,h1);
xlabel('samples');
ylabel('amplitude');
% cosine signal
clc;
clear all;
close all;
N=input('enter the length of the sequence');
a=input('enter the numerator coefficient value');
b=input('enter the denominator coefficient value');
n1=0:1:N-1;
x1=cos(0.05*pi*n1);
h1=filter(b,a,x1);
disp(h1);
subplot(2,1,1);
stem(n1,x1);
title('cos signal');
xlabel('samples');
ylabel('amplitude');
subplot(2,1,2);
stem(n1,h1);
xlabel('samples');
ylabel('amplitude');





Generation of Elementary Sequences of All Signals with Wave Forms

By // No comments:
%impulse
 clc;
 clear all;
 close all;
 disp('unit impulse signal');
 N=input('enter number of samples');
 n=-N:1:N
 X=(n==0)
 stem(n,X,'filled');
 x label('samples');
 y label(amplitude');
 title('impulse signal');
 %unit step
 clc;
 clear all;
 close all;
 disp('unit step signal');
 N=input('enter number of samples');
 n=-N:1:N
 X=(n>=0)
 stem(n,X,'filled');
 x label('samples');
 y label(amplitude');
%unit ramp
 clc;
 clear all;
 close all;
 disp('unit ramp signal');
 N=input('enter number of samples');
 a=input('enter value of ramp');
 n=0:0.5:N
 X=a*n
 stem(n,X,'filled');
 x label('samples');
 y label(amplitude');
%exponential
 clc;
 clear all;
 close all;
 disp('growing exponential signal');
 N=input('enter number of samples');
 a=input('enter value of a');
 n=-N:1:N
 X=a.^n
 stem(n,X,'filled');
 xlabel('samples');
 ylabel('amplitude');
%sine signal
clc;
clear all;
close all;
disp('sine signal');
N=input('enter number of samples');
n=0:0.1:N
X=sin(n)
stem(n,X,'filled');
xlabel('samples');
ylabel('amplitude');
%cosine signal
clc;
clear all;
close all;
disp('cosine signal');
N=input('enter number of samples');
n=0:0.1:N
X=cos(n)
stem(n,X,'filled');
xlabel('samples');
ylabel('amplitude');











Ac Matlab Outputs

By // No comments:

 JUST CLICK ON BELOW SITE THAT SHOWS A FILE NAMED   acoutput11.10.2014.docx (219,2 kB)  CLICK ON THAT DIRECT WORD FILE WILL DOWNLOAD  U CAN GOTHROUGH THE OUTPUTS THERE .......
               

      http://harishpola.webnode.com/news/ac-matlab-outputs/

Frequency Modulation Using Message Signal as A Square in Matlab with Waveforms

By // 2 comments:
clc;
clear all;
close all;
fc=30;
fm=2;
dev=20;
fs=100*fc;
t=0:1/fs:2/fm;
mt=square(2*pi*fm*t);
ct=sin(2*pi*fc*t);
st1=fmmod(mt,fc,fs,dev);
st2=pmmod(mt,fc,fs,dev);
figure(1);
subplot(4,1,1);
plot(t,mt,'r');
title('msg signal');
xlabel('time');
ylabel('amplitude');
subplot(4,1,2);
plot(t,ct);
title('carrier signal');
xlabel('time');
ylabel('amplitude');
subplot(4,1,3);
plot(t,st1);
title('fm modulated signal');
xlabel('time');
ylabel('amplitude');
subplot(4,1,4);
plot(t,st2);
title('pm modulated signal');
xlabel('time');
ylabel('amplitude');


Frequency Synthesizer Using Matlab with Waveforms

By // No comments:
clc;
clear all
close all;
fs=10000;
t=0:1/fs:1;
f=10;
x1=square(2*pi*f*t);
x2=square(2*pi*f/2*t);
x3=square(2*pi*2*f*t);
subplot(3,1,1);
plot(t,x1,'g');
title('original signal');
xlabel('time period');
ylabel('frequency');
subplot(3,1,2);
plot(t,x2,'r');
title('original signal with half frequency');
xlabel('time period');
ylabel('frequency');
subplot(3,1,3);
plot(t,x3,'b');
title('original signal with double frequency');
xlabel('time period');
ylabel('frequency');


Sampling Theorem Using Matlab with Waveforms

By // No comments:
clc;
clear all;
close all;
t=-10:0.01:10;
T=4;
fm=1/T;
x=cos(2*pi*fm*t);
subplot(2,2,1);
plot(t,x);
title('msg signal');
xlabel('time');
ylabel('amplitude');
fs1=1.6*fm;
fs2=2*fm;
fs3=8*fm;
%sampling with fs<2fm
n1=-4:1:4;
x1=cos(2*pi*fm/fs1*n1);
subplot(2,2,2);
stem(n1,x1);
hold on;
subplot(2,2,2);
plot(n1,x1,'r');
title('sampling when fs<2fm ');
xlabel('sample');
ylabel('amplitude');
%sampling with fs=2fm
n2=-5:1:5;
x2=cos(2*pi*fm/fs2*n2);
subplot(2,2,3);
stem(n2,x2);
hold on;
subplot(2,2,3);
plot(n2,x2,'r');
title('sampling when fs=2fm ');
xlabel('sample');
ylabel('amplitude');
%sampling with fs>2fm
n3=-20:1:20;
x3=cos(2*pi*fm/fs3*n3);
subplot(2,2,4);
stem(n3,x3);
hold on;
subplot(2,2,4);
plot(n3,x3,'r');
title('sampling when fs>2fm ');
xlabel('sample');
ylabel('amplitude');